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Key Points: 19 

• Sr/Y and (La/Yb)N ratios of magmatic rocks can be used for estimating paleo-elevation of 20 

orogenic belts. 21 

• Two proto-plateaus were formed successively during the Late Cretaceous in the central and 22 

southern Tibet before India-Asia collision. 23 

• A paleo-valley formed during the Paleogene in central Tibet and the Tibetan Plateau reached 24 

present-day elevations during the Miocene.  25 
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Abstract 26 

Crustal thickness, elevation, and Sr/Y and (La/Yb)N of magmatic rocks are strongly correlated for 27 

subduction-related and collision-related mountain belts. We quantitatively constrain the paleo-28 

elevation of the Tibetan Plateau since the Cretaceous using empirically derived equations. The 29 

results are broadly consistent with previous estimates based on stable isotope and structural 30 

analyses, supporting a complex uplift history. Our data suggest that a proto-plateau formed in 31 

central Tibet during the Late Cretaceous and was higher than the contemporaneous Gangdese arc. 32 

This proto-plateau collapsed before the India-Asia collision, during the same time period that 33 

elevation in southern Tibet was increasing. During the India-Asia collision, northern and southern 34 

Tibet were uplifted first followed by renewed uplift in central Tibet, which suggests a more 35 

complicated uplift history than commonly believed. We contend that a broad paleo-valley formed 36 

during the Paleogene in central Tibet and that the whole Tibetan Plateau reached present-day 37 

elevations during the Miocene. 38 

Plain Language Summary 39 

Paleo-elevation is an important factor in understanding the mountain building processes. Strong 40 

correlations are observed between crustal thickness, elevation, and Sr/Y and (La/Yb)N of magmatic 41 

rocks for both subduction-related and collision-related mountain belts. We established empirical 42 

equations derived from modern examples and applied them to constrain the paleo-elevation 43 

evolution of the Tibetan Plateau since the Cretaceous. Our calculated results are broadly consistent 44 

with previous estimates based on stable isotope and structural analyses and document a complex 45 

uplift history. In the central Tibet, a proto-plateau with an elevation >3000 m was formed during 46 

the Late Cretaceous and was higher than the Gangdese continental arc in the south. This proto-47 

plateau collapsed at the same time as the southern Tibet plateau (Lhasaplano) was uplifted prior to 48 

the India-Asia collision. formed before the India-Asia collision. During the India-Asia collision in 49 

the Cenozoic, northern and southern Tibet were uplift first, followed by uplift of central Tibet. A 50 

paleo-valley was formed in central Tibet during the Paleogene and elevations of the whole Tibetan 51 

Plateau similar to the present-day were achieved during the Miocene.  52 

1 Introduction 53 

The paleo-elevation history of the Tibetan Plateau (TP) remains a topic of intense debate 54 

(Botsyun et al., 2019; Deng et al., 2012, 2019; Deng & Ding, 2015; Ding et al., 2014, 2017; Ingalls 55 

et al., 2018; Quade et al., 2011; Rowley & Currie, 2006; Rowley & Garzione, 2007; Spicer et al., 56 

2003; Su et al., 2019; Sun et al., 2015; Xu et al., 2013). Stable isotope (including clumped-isotope) 57 

studies proposed that the majority of the TP reached its present elevation during the Eocene (e.g., 58 

Ding et al., 2014; Ingalls et al., 2018; Rowley & Currie, 2006). However, paleontological studies 59 

questioned this viewpoint, suggesting that the TP did not achieve its present elevation until the 60 

Miocene (e.g., Deng et al., 2019; Deng & Ding, 2015; Su et al., 2019). Several models have been 61 

proposed for the Cenozoic uplift history of the TP, including synchronous uplift, northward 62 

stepwise uplift, incremental northward uplift, and differential uplift (England & Houseman, 1989; 63 

Law & Allen, 2020; Liu et al., 2016; Tapponnier et al., 2001). The pre-Cenozoic uplift history of 64 

the TP has only been described qualitatively and there is little information available outside of the 65 

Lhasa terrane (DeCelles et al., 2007; Kapp, DeCelles, Gehrels, et al., 2007; Lai, Hu, Garzanti, Sun, 66 

et al., 2019). The Gangdese arc region was thought to be at a relatively low elevation during the 67 

Early Cretaceous and become the Lhasaplano during the late Late Cretaceous to Paleocene (Ding 68 
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et al., 2014; Kapp, DeCelles, Leier, et al., 2007). Another proto-plateau (Northern Lhasaplano) 69 

was proposed to be formed in the Northern and Central Lhasa terranes with a width > 160 km 70 

during the early Late Cretaceous (Lai, Hu, Garzanti, Sun, et al., 2019).  71 

Most of the studies listed above use stable isotope (including clumped-isotope) or 72 

paleontological methods to estimate paleo-elevations (e.g., Spicer et al., 2003; Currie et al., 2005; 73 

Rowley and Garzione, 2007; Quade et al., 2011; Ding et al., 2017; Ingalls et al., 2018; Su et al., 74 

2019; Deng et al., 2019). In recent years, additional methods have been developed to estimate 75 

Moho depth based on whole-rock geochemical and isotopic compositions of intermediate to felsic 76 

magmatic rocks (Alexander et al., 2019; Chapman et al., 2015; Chiaradia, 2015; F. Hu et al., 2017; 77 

Profeta et al., 2015), or the compositions of accessory minerals such as zircon (Balica et al., 2020; 78 

McKenzie et al., 2018). Since most convergent margins are in isostatic equilibrium at scales of 79 

hundreds of km, there is a direct correlation between crustal thickness and elevation assuming 80 

crustal Airy equilibrium (Airy, 1855; Lee et al., 2015), described as  81 

                                               𝑑ℎ 𝑑𝐻 = (1 − 
𝑐


𝑚
)⁄⁄                                                       (1) 82 

where h is the elevation, H is the crustal thickness, c is the crustal density, and m is the upper 83 

mantle density. Zhu et al. (2017) have estimated paleo-elevation for the southern Tibet using a 84 

two-step processes where they first calculated paleo-Moho depths using the equations of Profeta 85 

et al. (2015) then related those depths to paleo-elevation assuming Airy isostatic equilibrium (Eq. 86 

1) with constant crustal and mantle densities. This contribution updates these previous studies by 87 

1) directly establishing an empirical relation between elevation and Sr/Y and (La/Yb)N ratios of 88 

magmatic rocks, 2) exploring how variable crustal and mantle densities may affect paleo-elevation, 89 

and 3) expanding the analysis to central and northern Tibet. Reconstructing paleo-elevation 90 

changes for the TP since the Cretaceous suggests diachronous uplift and reveals a more dynamic 91 

uplift history than previously believed. 92 

 93 

2 Methods 94 

2.1 Empirical correlation equations 95 

A global compilation of geochemical data of magmatic rocks from modern subduction 96 

zones and collisional zones and their corresponding elevations are presented in the Tables S1 and 97 

S2 in the supporting information. The data is organized into subsets based on location. Elevation 98 

for each data subset comes from the USGS National Elevation Dataset and NASA Shuttle Radar 99 

Topography Mission and was averaged after smoothing. Elevation uncertainty (1σ) is based on the 100 

standard deviation of individual sample location elevations within the data subsets. Moho depth is 101 

calculated based on the CRUST 1.0 model (http://igppweb.ucsd.edu/~gabi/rem.html), and 102 

referenced from Chapman et al. (2015), Profeta et al. (2015), and Hu et al. (2017) (Tables S3 and 103 

S4). A weighted least-squares regression between the elevation and Moho depth was established 104 

for subduction-related and collisional zones, respectively (Figure 1). 105 
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 106 

Figure 1. Global correlations between averaged elevations and average Moho depth, median Sr/Y 107 

and (La/Yb)N ratios from subduction zones (a, c and e) and collision zones (b, d and f). The blue 108 

circles represent the magmatic rocks from subduction zones formed during the Pliocene to present. 109 

The red (Pliocene to present) and orange circles (Middle to Late Miocene) represent magmatic 110 

rocks from collision zones. The brown dashed lines represent calculated reference lines based on 111 

the Airy isostasy and relationships between the Moho depth and median Sr/Y and (La/Yb)N 112 

(Chapman et al., 2015; F. Hu et al., 2017; Profeta et al., 2015). The given zero-elevation crustal 113 

thickness (H0) and density of mantle (m) and crust (c) are shown on each diagram. 114 

Geochemical data was filtered and processed using the methods of Chapman et al. (2015) 115 

and Hu et al. (2017) (Tables S3 and S4). Our data subsets include geochemical data from the 116 
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Pliocene to Quaternary age magmatic rocks for both subduction and collision zones. Miocene 117 

geochemical data from the TP are also included in our database because the Miocene paleo-118 

elevation data is well-constrained and widely accepted (e.g., Currie et al., 2005; Quade et al., 2011; 119 

Rowley & Currie, 2006; Spicer et al., 2003). Samples from subduction zones with SiO2 of 55–70 120 

wt.%, MgO of 1.0–6.0 wt.%, and Rb/Sr ratio of 0.05–0.20 and samples from collision zones with 121 

SiO2 of 55–72 wt.% and MgO of 0.5–6.0 wt.% were selected. Based on these criteria, we can 122 

efficiently removed those samples formed by partial melting or assimilation and fractional 123 

crystallization at shallow crustal level, which will result in the data having imprints of a thin crust 124 

(low elevation) but not the real crustal thickness (elevation) (Chapman et al., 2015; F. Hu et al., 125 

2017). We then removed Sr/Y and (La/Yb)N outliers from each data subsets by using modified 126 

Thompson tau statistical method and calculated the median values of Sr/Y and (La/Yb)N and their 127 

standard deviations. We discarded data subsets with standard deviations higher than 10, except for 128 

those from the Andes. The data subsets from collision zones with average Rb/Sr higher than 0.35 129 

were also rejected (F. Hu et al., 2017). The high La data subsets (>70 ppm) from collision zones 130 

were excluded from La/Yb compilation because the potential high temperature melting strongly 131 

elevates the La content but has little impact on Sr, Y and Yb contents, which leads to extremely 132 

high La/Yb ratios and their failure to constrain elevation (Figure S1).  133 

We performed a weighted least-squares regression through these data subsets to obtain the 134 

correlation equations presented in Figure 1. Because we relate geochemical composition to 135 

elevation directly, no assumptions about variations in crustal and/or mantle densities are required. 136 

However, it is instructive to compare our empirically-derived paleo-elevation equations to models 137 

that relate (La/Yb)N ratio to paleo-elevation assuming Airy isostacy (e.g., Zhu et al., 2017). We 138 

explore a range of crustal and upper mantle densities based on the range of published P-/S-wave 139 

velocities and layer thicknesses for modern subduction and collisional orogenic systems (Figure 140 

S2; Table S5; Brocher, 2005). The transformation from P-/S-wave velocity to crustal density is 141 

based on the Nafe-Drake curve (Equation 2) and Brocher’s regression fit (Equation 3) (Brocher, 142 

2005), described as 143 

 𝜌(𝑔 𝑐𝑚3⁄ ) = 1.6612𝑉𝑃 − 0.4721𝑉𝑃
2 + 0.0671𝑉𝑃

3 − 0.0043𝑉𝑃
4 + 0.000106𝑉𝑃

5           (2) 144 

       𝑉𝑃(𝑘𝑚 𝑠⁄ ) = 0.9409 + 2.0947𝑉𝑆 − 0.8206𝑉𝑆
2 + 0.2683𝑉𝑆

3 − 0.0251𝑉𝑆
4               (3) 145 

where  is the crustal density, Vp is the P-wave velocity, Vs is the S-wave velocity. The upper 146 

mantle density refers to the values provided by He et al. (2014) and Lee et al. (2015). 147 

 148 

2.2 The Tibetan Plateau 149 

Geochemical data for Cretaceous to recent magmatic rocks in the TP were obtained from 150 

the Tibetan Magmatism Database (Table S6; Chapman and Kapp, 2017). Following previous 151 

authors (Yi et al., 2018; Zhu et al., 2019), we subdivided the Qiangtang and Lhasa terranes into 152 

five sub-terranes, including the Northern Qiangtang, Southern Qiangtang, Northern Lhasa, Central 153 

Lhasa, and Southern Lhasa terranes and investigate the paleo-elevation history of each separately 154 

(Figure 2). Because of the distinct tectonic settings of different terranes during different time 155 

periods, subduction-related and collision-related equations were applied for each terrane according 156 

to specific circumstances (see Table S7). Both methods were employed for comparison of 157 

magmatic rocks formed during the transition time form oceanic subduction to continental collision 158 

(e.g., ~120-100 Ma for the Southern Qiangtang and the Northern Lhasa terranes, and ~65-45 Ma 159 
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for the Central and Southern Lhasa terranes). Paleo-elevation uncertainty is reported at the 2σ level 160 

and includes the uncertainty from the equation used and the standard deviation of Sr/Y or (La/Yb)N 161 

of each data subset. 162 

 163 

Figure 2. Digital elevation map of the TP showing the main active faults, suture zones, and 164 

terranes (after Taylor and Yin, 2009; Searle et al., 2016). The symbols represent locations and 165 

formation time of complied data. The abbreviations of main terranes are as follows: SL—166 

Southern Lhasa; CL—Central Lhasa; NL—Northern Lhasa; SQ—Southern Qiangtang; NQ—167 

Northern Qiangtang. The abbreviations of faults, mélange and suture zones separating the main 168 

terranes are as follows: EKL-ANMQSZ—Eastern Kunlun-Animaqing suture zone; JSJSZ—169 

Jinshajiang suture zone; LSSZ—Longmuco-Shuanghu suture zone; BNSZ—Bangong-Nujiang 170 

suture zone; SNMZ—Shiquanhe-Nam Tso mélange zone; LMF—Luobadui-Milashan fault; 171 

IYZSZ—Indus-Yarlung Zangbo suture zone.  172 

3 Results and Discussion 173 

3.1 Empirical equations and their limitation 174 

The empirical equations between the median Sr/Y and (La/Yb)N ratios of magmatic rocks 175 

and average elevations from subduction and collision zones are shown in Figure 1. The calculated 176 

regressions show good correlations with R2 > 0.85. The empirical equations for subduction zones 177 

are as follows: 178 

                         𝑆𝑟/𝑌𝑆 = (10.50 ± 0.99) × 𝐸 + (4.71 ± 0.82)                                          (4) 179 

                            [(𝐿𝑎/𝑌𝑏)𝑁]𝑆 = (2.61 ± 0.32)𝑒(0.41±0.032)𝐸                                           (5) 180 
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where E is the elevation in meters, and the subscript “S” means the subduction zone models. The 181 

empirical equations for collision zones are as follows: 182 

                         𝑆𝑟/𝑌𝐶 = (7.72 ± 1.32) × 𝐸 + (3.98 ± 2.87)                                          (6) 183 

                          [(𝐿𝑎/𝑌𝑏)𝑁]𝐶 = (5.91 ± 0.92)𝑒(0.32±0.042)𝐸                                           (7) 184 

where the subscript “C” refers to the collision zone models.  185 

Based on the typical standard deviation of Sr/Y and (La/Yb)N in the data subsets and the 186 

uncertainty in our empirically-derived equations, the average uncertainty of this method is 500 to 187 

1500 m (Figure S3). Paleo-elevation estimates higher than 6000 m for subduction systems [Sr/Y 188 

> 65; (La/Yb)N > 30] and collision zones [Sr/Y > 50; (La/Yb)N > 40] and lower than 1000 m 189 

[(La/Yb)N < 8] for collision zones are not considered valid because this range of values are not 190 

constrained by the data used to create the empirical relationships. 191 

Strong correlations (R2 > 0.85) between the elevation and Moho depth in modern 192 

subduction and collision zones confirms the effectiveness of equations 4-7 (Figure 1). The 193 

differences in equations for subduction zones and equations for collision zones are interpreted to 194 

be caused by the variations in crust and upper mantle density (Figure 1; Bassett et al., 2016; Lee 195 

et al., 2015). Previous studies that calculate paleo-elevation based on Airy isostasy and paleo-196 

crustal thickness (e.g., Chapman et al., 2020; Zhu et al., 2017) implicitly assume that the crust and 197 

upper mantle density have not changed, which may not be valid for ancient orogens. Figure 1 198 

shows how using different densities of the crust and upper mantle could influence estimates of 199 

paleo-elevation. The data suggest that choosing incorrect density values could result in paleo-200 

elevation estimates up to 3000 m away from a true value (Figure 1 and S2). Therefore, our 201 

equations, which do not require assumption about density, could help reduce uncertainty. Figure 202 

1 also makes predictions for the average crustal density in subduction and collisional systems 203 

based on our empirical equations, although this was not our primary goal. The predicted average 204 

crustal densities of ~2.8-3.0 g/cm3 for subduction zones and ~2.6-2.8 g/cm3 for collision zones are 205 

geologically realistic values and supports the utility of our new equations (Figure S2).  206 

3.2 Paleo-elevation in the Tibetan Plateau since the Cretaceous 207 

Our results are consistent with previous estimates based on stable isotopes (Figure 3; 208 

Tables S7 and S8; e.g., Currie et al., 2005; Ding et al., 2014; Ingalls et al., 2018; Xu et al., 2013). 209 

Results calculated from Sr/Y and (La/Yb)N generally overlap within uncertainty (Figure S4). When 210 

results calculated from both methods differ, the higher value was chosen to represent the elevation. 211 

This is because most lower values were calculated from (La/Yb)N, which has a low resolution 212 

when the calculated elevation is lower than 3000 m (Figures. 1 and S4). The uncertainly of our 213 

calculation ranges from 300 m to 1500 m, with an average of ~900 m (Table S7).  214 
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 215 

Figure 3. The elevation changes of different terranes of the TP since the Cretaceous (Table S7). 216 

Previous published elevation data based on isotopic and fossil studies are also shown for 217 

comparison (Table S8). Magmatic data from Zhu et al. (2017) were calculated using equations of 218 

this study. The purple and green jagged lines represent relative India-Asia convergence rate at 219 

eastern and western Himalayan syntaxis, respectively (after van Hinsbergen et al., 2011). 220 

3.2.1 Early Cretaceous 221 

All terranes in Tibet were located at relatively low elevation (≤ 2000 m) prior to the 222 

Cretaceous (Figures 3 and 4). During the Early Cretaceous, the Southern Qiangtang and Northern 223 

Lhasa terranes were uplifted from ~2000 m to 3000 m (Figure 3). At the same time, the paleo-224 

elevation of the Southern Lhasa terrane (Gangdese arc) was relatively stable at ~2500 m (Figure 225 

3).  226 
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 227 

Figure 4. Proposed topography profile representing north (right) to south (left) transects of the 228 

TP from the Cretaceous to Miocene (Table S9). The transect location is illustrated as AA’ in the 229 

Figure 2. The green dashed line represents the paleo-elevation during the middle Early 230 

Cretaceous, Late Cretaceous, Eocene, and early Miocene from bottom to top. The black solid 231 

line represents the paleo-elevation during the late Early Cretaceous, Paleocene, Oligocene, and 232 

late Miocene from bottom to top. The pink line represents the present elevation profile of the TP 233 

(AA’ in Figure 1). 234 
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Our results from the South Qiangtang terrane are consistent with evidence for its fast 235 

exhumation during the Early Cretaceous and slow exhumation during ~90-60 Ma (Figure 3; Zhao 236 

et al., 2017, 2020). We interpret uplift of the Southern Qiangtang terrane to be related to the 237 

collision between the Qiangtang and Lhasa terrane along the Bangong-Nujiang suture in the Early 238 

Cretaceous (Kapp, DeCelles, Gehrels, et al., 2007; Lai, Hu, Garzanti, Xu, et al., 2019; Zhao et al., 239 

2020). The low elevations in the Northern and Central Lhasa terranes during the initial collision 240 

period are consistent with the contemporaneous carbonate deposition (Lai, Hu, Garzanti, Xu, et 241 

al., 2019). As collision continued, the elevation of the Northern Lhasa terrane increased to ~3000 242 

m during the Early Cretaceous (Figures 3 and 4). No change in the elevation of the Southern Lhasa 243 

terrane during the Early Cretaceous is consistent with the fore-arc sedimentary records and a 244 

constant convergence rate between India and Asia (J.-G. Wang et al., 2020). 245 

3.2.2 Late Cretaceous 246 

During the early Late Cretaceous, the Northern Lhasa and Central Lhasa terranes increased 247 

in elevation to ~4000 m (Figure 3). Based on these results, we interpret the existence of a proto-248 

plateau (>3000 m; the Northern Lhasaplano) in central Tibet during the Late Cretaceous, which 249 

exceeded the elevation of the Southern Qiangtang terrane (Figure 4). Opposite to the Central and 250 

Northern Lhasa terranes, the paleo-elevation of the Southern Lhasa terrane (Gangdese arc) 251 

decreased to ~2000 m at ca. 75 Ma (Figure 3). 252 

Earlier uplift of the Northern Lhasa terrane relative to the Central Lhasa terrane is 253 

corroborated by sedimentological studies (DeCelles et al., 2007; Kapp, DeCelles, Gehrels, et al., 254 

2007; Lai, Hu, Garzanti, Sun, et al., 2019), and paleocurrent data supports a higher elevation of 255 

the Lhasa terrane relative to the Qiangtang terrane during this stage (Figure 4; Lai, Hu, Garzanti, 256 

Sun, et al., 2019). The high elevation was reflected by a thickened crust during the early Late 257 

Cretaceous, evidenced by lower-crustal derived adakitic rocks (G.-Y. Sun et al., 2015; Yi et al., 258 

2018). Tectonic shortening/thrusting also indicates the upper crust was thickened significantly 259 

during the Late Cretaceous (DeCelles et al., 2007; Kapp, DeCelles, Gehrels, et al., 2007), which 260 

supports the concept of the Northern Lhasaplano (Figure 4; Lai, Hu, Garzanti, Sun, et al., 2019; 261 

Murphy et al., 1997; J.-G. Wang et al., 2020). The initial uplift of the Gangdese arc during ~96-90 262 

Ma is consistent with increasing input of volcanic rocks from the Gangdese arc to the retro-arc 263 

basin (J.-G. Wang et al., 2020). Acceleration of the convergence rate at ~90 Ma may have also 264 

resulted increased shortening, crustal thickening, and uplift (Figure 3; S. Li, van Hinsbergen, Shen, 265 

et al., 2020). Slab rollback and lower crustal delamination has been proposed for the Gangdese arc 266 

(Ji et al., 2014; Zhu et al., 2017), which may explain the subsequent decrease in paleo-elevation 267 

observed there and may also lower the elevation in the Central and Northern Lhasa terranes (Figure 268 

3).  269 

3.2.3 Paleocene 270 

The elevation of the Northern Lhasaplano in central Tibet decreased to ~2500 m at the 271 

Paleocene (Figure 3; Xu et al., 2015). Conversely, the Southern Lhasa paleo-elevation increased 272 

to ~3000 m by the start of the Paleogene, which is interpreted to mark the birth of the Lhasaplano. 273 

The Southern Lhasa terrane maintained an elevation of ~3000-3500 m throughout the Paleocene 274 

(Figure 3). Therefore, two proto-plateaus were formed successively during the Late Cretaceous to 275 

Early Paleogene in the central and southern Tibet, respectively (Figure 4).  276 
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The low elevation in central Tibet during this time may be related to pervious post-277 

collisional extension and delamination of the lower crust (Meng et al., 2014; Yi et al., 2018). 278 

Increasing elevation in the Southern Lhasa terrane is consistent with evidence for crustal 279 

thickening and ongoing subduction (Figure 3; Kapp, DeCelles, Leier, et al., 2007; Zhu et al., 2017). 280 

Deformation of the Shexing Formation and unconformities during ~75-65 Ma in the Southern 281 

Lhasa documented this crust thickening and uplift process (Leier et al., 2007). The striking increase 282 

of the convergence rate at ~70 Ma may also connect to the uplift in the Southern Lhasa (Figure 3; 283 

S. Li, van Hinsbergen, Najman, et al., 2020). 284 

3.2.4 Eocene-Oligocene 285 

During the Eocene to Oligocene, the Qiangtang terrane increased in elevation to ~5000 m 286 

(Figure 3). In contrast, the Southern Lhasa terrane kept an elevation of ~3000-3500 m during the 287 

Early Eocene and was uplifted significantly during the Late Eocene to Oligocene reaching ~4000-288 

5000 m (Figure 3). However, the Central Lhasa terrane and possibly the Northern Lhasa terrane 289 

maintained a low elevation of ca. 2500 m during the Eocene, which we interpret to represent a 290 

paleo-valley between high elevations to the north in the Qiangtang terrane and to the south in the 291 

Southern Lhasa terrane (Figures 3 and 4). 292 

Uplift of the Qiangtang block is consistent with evidence for major crustal shortening and 293 

rapid exhumation (Figure 3; Kapp, DeCelles, Gehrels, et al., 2007; Rohrmann et al., 2012; C. Wang 294 

et al., 2008; Z. Zhao et al., 2020). Magnetic susceptibility analysis of the Gonjo Basin suggests 295 

tectonic shortening in the Qiangtang terrane during ~52-48 Ma (S. Li, van Hinsbergen, Shen, et 296 

al., 2020), and oxygen isotopic data suggest that the Qiangtang terrane experienced a significant 297 

uplift event during the Eocene to Oligocene (Xu et al., 2013). Our elevation estimates for the 298 

Southern Lhasa terrane during the Early Eocene are slightly lower than those from the isotopic 299 

studies (~4000-4500 m) (e.g. Ding et al., 2014), although they are consistent within uncertainty 300 

(Figure 3). The initial India-Asia collision and deceleration of convergence at ~55 Ma should have 301 

contributed to crustal deformation (X. Hu et al., 2016; Zheng & Wu, 2018). However, the 302 

calculated results show no obvious change of paleo-elevation in the Southern Lhasa terrane, which 303 

could be related to a contemporaneous increase in erosion (Ding et al., 2014; Xu et al., 2015). 304 

Upper crustal shortening of the Central Lhasa terrane was low during ~50-30 Ma (Kapp, DeCelles, 305 

Gehrels, et al., 2007), supporting our interpretation of a paleo-valley. Isotopic and paleontological 306 

data also support the presence of a paleo-valley or intermontane basin (Nima-Lunpola Basin) 307 

(Figure 4; Ding et al., 2014; Su et al., 2019). Paleontological and paleoclimatological data show 308 

that this valley existed as a topographic feature until the Oligocene (Botsyun et al., 2019; Su et al., 309 

2019; B. Sun et al., 2015), but isotopic data suggests its uplift during the Late Eocene (Rowley & 310 

Currie, 2006). The deceleration of convergence at ~45 Ma is proposed to be related to the break-311 

off of the subducted slab (Ji et al., 2016). After this, the long-term low velocity of convergence 312 

rate supports a continuous hard collision between India and Asia (van Hinsbergen et al., 2011). 313 

Uplift of the Southern Lhasa during the Late Eocene to Oligocene is consistent with rapid 314 

exhumation of the Gangdese arc and the activating of the Gangdese thrust belt (~30-23 Ma) (Kapp, 315 

DeCelles, Gehrels, et al., 2007; Y. Li et al., 2015; Yin et al., 1999). Late Oligocene to Miocene 316 

post-collisional adakitic rocks in southern Tibet also supports thick crust during that time (Chung 317 

et al., 2005; Hou et al., 2012).  318 
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3.2.5 Miocene 319 

During the Miocene, the convergence rate between India and Asia continued to slow and 320 

the Southern Lhasa and Himalaya terranes continued to be uplifted (Figure 3). Underthrusting of 321 

India beneath the TP resulted in the expansion of the Himalayan thrust belt and its extraordinarily 322 

rapid uplift (Ding et al., 2017; Gébelin et al., 2013; Y. Li et al., 2015). The rise of the Himalaya 323 

marked the final formation of the TP (Figure 4; Currie et al., 2005; D.B. Rowley & Currie, 2006).  324 

 325 

4 Conclusions 326 

Empirically-derived equations are presented relating Sr/Y and (La/Yb)N of intermediate 327 

igneous rocks to elevation. These equations can be effectively used to reconstruct the paleo-328 

elevation histories for ancient orogens. Our calculated results for the TP are consistent with results 329 

from other paleoaltimetry studies and geological evidence. The Cretaceous amalgamation between 330 

the Lhasa and Qiangtang terranes helped to build a proto-plateau >3000 m in elevation in central 331 

Tibet, which exceeded the paleo-elevation of the Gangdese arc during the same time. Orogenic 332 

collapse reshaped the topography of the central Tibet by the end of the Cretaceous. The TP 333 

experienced a differential uplift history during the India-Asia collision. The early uplift of the 334 

Qiangtang and Southern Lhasa terranes formed a broad paleo-valley in central Tibet during the 335 

Eocene before present-day elevations of the whole TP were achieved during the Miocene.  336 
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